Preparation of nanoparticles by RF plasma method

Nisshin Engineering Inc. http://www.nisshineng.com

Definition of nanoparticles

What's RF plasma method

RF plasma method are able to produce nanoparticles by vapor phase reactions

RF plasma has a larger frame or reaction volume than the DC

The efficiency of the particle production is higher

Another advantage of RF plasma is the ability to operate without the presence of any electrode

> It's enables nanoparticles to be obtained as pure as the raw material without suffering contamination from the evaporation of the electrode

Schematic illustration

Raw material is evaporated instantaneously in high temperature plasma frame

The produced vapor condensed into nanoparticles by subsequent rapid cooling

List of prepared nanoparticles

Material	Diameter (BET)	Shape (SEM)	Crystal System (XRD)
SiO ₂	10 ~ 50nm	Sphere	Amorphous
TiO ₂	30 ~ 100nm	Sphere	Tetragonal
Y ₂ O ₃	30 ~ 80nm	Sphere	Monoclinic
BaTiO ₃	30 ~ 80nm	Sphere	Cubic(Tetragonal)
Ni	50 ~ 200nm	Sphere	Cubic
Cu	50 ~ 200nm	Sphere	Cubic
TiN	30 ~ 60nm	Sphere	Cubic
SiC	30 ~ 60nm	anisotropy	Cubic + Hexagonal

TEM image of nanoparticles

Titania(TiO₂)

Alumina(Al₂O₃)

 $Yttria(Y_2O_3)$

Barium Titanate(BaTiO₃)

Silica(SiO₂)

Nickel(Ni)

Metal nanoparticles

Preparation method of composite nanoparticles

Compound nanoparticles

Solid solution nanoparticles

Solid solution nanoparticles

Core-shell nanoparticles

Nickel-Barium titanate composite nanoparticles

Fourier Transform

Purpose

1. Prevention of oxidation of metal nanoparticles

2 . Control of sintering process

Analysis of core-shell nanoparticles

