Adsorption Chillers InvenSor LTC 10 plus

Compact chillers for efficient thermal cooling with integrated hydraulic unit

The InvenSor LTC 10 plus was developed for especially low driving temperatures between 65 and 70°C. For operation at higher driving temperatures, InvenSor offers the InvenSor HTC series.

10 kW cooling capacity - compact design

The nominal capacity of the LTC 10 plus is 10 kW. The compact design allows for space saving set-up. For an easy installation, all hydraulic connections are accessible on the top of the machine. The unit is optimized for transport by pallet jack.

Easy operation and setting - prepared for heat pump operation

The target water temperatures in the cold water circuit, the driving circuit return flow and the recooling circuit are easily adjustable on the touch display. The heat pump mode is already installed and can easily be activated.

Maintenance-free cold water production by ActiVac

ActiVac is an InvenSor development for optimising the operating pressure in the adsorber. Pressure control, otherwise needed in sorption chillers, becomes obsolete.

LTC 10 plus: InvenSor chilling station integrated

The LTC 10 plus is integrated with all basic components for thermal cooling. It includes a complete hydraulic unit with electronically regulated high-efficiency pumps, so that all necessary water circuit pipes for heat supply, cold distribution and recooling can be directly connected.

LTC 10 plus-FC: InvenSor chilling station & free cooling function integrated

The free cooling function allows for even more energy savings: If the outside air temperature is cold enough, it can be used directly for climatization and no driving heat is necessary to operate the chiller.

Dimensions of the machine

Length
Height 1,370 mm
Width 750 mm
Weight LTC 10 plus390 kg
Weight LTC 10 plus-FC 395 kg

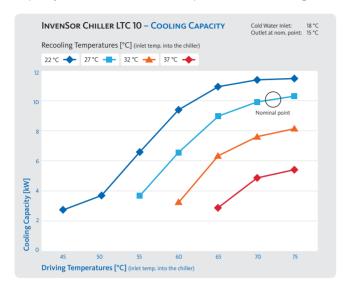
Position of the connectors

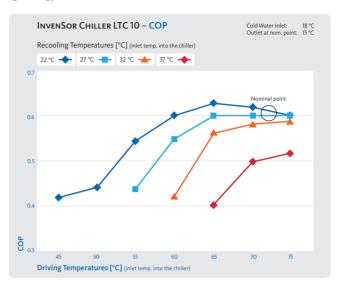
from the ground 1,400 mm

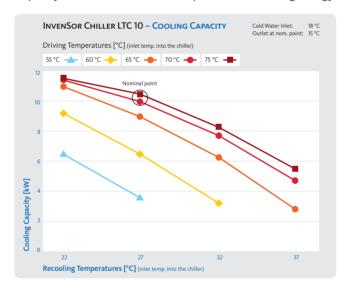
Nominal widths

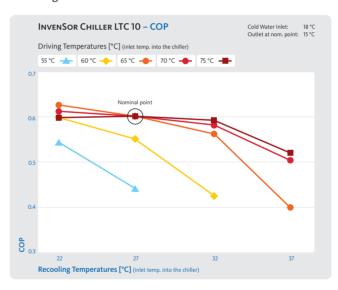
Drive (2x)	G 1"
Cooling (2x)	1/4"
Re-cooling (2x)	1/2"

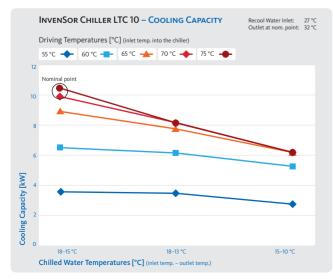
General technical specifications					
Chilling capacity	kW	4–12			
COP maximum		0.65			
Max. overpressure	bar	4			
Electrical connection	V∼, Hz; A	230, 50 / 60; max. 8,5			
Electrical power consumption Ø (incl. pumps)	W	395			

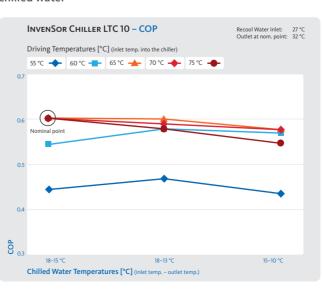

Specifications at nominal conditions		Cooling circuit	Recooling circuit	Drive circuit
COP		0.6		
Capacity	kW	10	26.7	16.7
Temperature – chiller inlet (IN)	°C	18	27	72
Temperature – chiller outlet (OUT)	°C	15	31.5	66
Temperatures – range	°C	10-25	20-37	45-100
Volume flows	l/h	2,900	5,100	2,500
Available ext. pressure head	mbar	400	400	300


Adsorption Chillers InvenSor LTC 10 plus


Technical specifications at different conditions


Capacity and COP at different temperatures of recooling and driving energy




Capacity and COP at different temperatures of driving energy and recooling

Capacity and COP at different temperatures of driving energy and chilled water

